Methylation patterns in sentinel genes in peripheral blood cells of heavy smokers: Influence of cruciferous vegetables in an intervention study.

TitleMethylation patterns in sentinel genes in peripheral blood cells of heavy smokers: Influence of cruciferous vegetables in an intervention study.
Publication TypeJournal Article
Year of Publication2011
AuthorsScoccianti C, Ricceri F, Ferrari P, Cuenin C, Sacerdote C, Polidoro S, Jenab M, Hainaut P, Vineis P, Herceg Z
JournalEpigenetics
Volume6
Issue9
Pagination1114-9
Date Published2011 Sep 1
ISSN1559-2308
Abstract

Changes in DNA methylation patterns are a hallmark of tobacco-induced carcinogenesis. We have conducted a randomized 4-week intervention trial to investigate the effects of three dietary regimens to modify DNA methylation patterns in peripheral white blood cells of heavy smokers. A group of 88 smokers were randomly assigned to and distributed among three diets, including (1) normal isocaloric diet (balanced in fruits and vegetables), according to international guidelines; (2) a diet enriched in flavonoids and isothiocyanates (particularly cruciferous vegetables); (3) a regimen consisting of diet 1 supplemented with flavonoids (green tea and soy products). Methylation patterns were analyzed by pyrosequencing in LINE1 (Long Interspersed DNA Elements), RASSF1A, ARF and CDKN2a (tumor suppressor genes), MLH1 (mismatch DNA repair) and MTHFR (folate metabolism). Three distinct patterns of methylation were observed. In LINE1, methylation showed a small but reproducible increase with all three regimens. MTHFR was constitutively methylated with no significant modulation by diets. The four other loci showed low basal levels of methylation with no substantial change after intervention. These data suggest that the isocaloric diet may stabilize global epigenetic (LINE1 DNA methylation) patterns in peripheral white blood cells but does not provide evidence for methylation changes in specific genes associated with this short-term dietary intervention.

DOI10.4161/epi.6.9.16515
Alternate JournalEpigenetics
PubMed ID21822058

Previous Publications